Weighted Distance Based Discriminant Analysis: The R Package WeDiBaDis
نویسندگان
چکیده
The WeDiBaDis package provides a user friendly environment to perform discriminant analysis (supervised classification). WeDiBaDis is an easy to use package addressed to the biological and medical communities, and in general, to researchers interested in applied studies. It can be suitable when the user is interested in the problem of constructing a discriminant rule on the basis of distances between a relatively small number of instances or units of known unbalanced-class membership measured on many (possibly thousands) features of any type. This is a current situation when analyzing genetic biomedical data. This discriminant rule can then be used both, as a means of explaining differences among classes, but also in the important task of assigning the class membership for new unlabeled units. Our package implements two discriminant analysis procedures in an R environment: the well-known distance-based discriminant analysis (DB-discriminant) and a weighteddistance-based discriminant (WDB-discriminant), a novel classifier rule that we introduce. This new procedure is based on an improvement of the DB rule taking into account the statistical depth of the units. This article presents both classifying procedures and describes the implementation of each in detail. We illustrate the use of the package using an ecological and a genetic experimental example. Finally, we illustrate the effectiveness of the new proposed procedure (WDB), as compared with DB. This comparison is carried out using thirty-eight, high-dimensional, class-unbalanced, cancer data sets, three of which include clinical features.
منابع مشابه
MVN: An R Package for Assessing Multivariate Normality
Assessing the assumption of multivariate normality is required by many parametric multivariate statistical methods, such as MANOVA, linear discriminant analysis, principal component analysis, canonical correlation, etc. It is important to assess multivariate normality in order to proceed with such statistical methods. There are many analytical methods proposed for checking multivariate normalit...
متن کاملPLDA based speaker verification with weighted LDA techniques
This paper investigates the use of the dimensionality-reduction techniques weighted linear discriminant analysis (WLDA), and weighted median fisher discriminant analysis (WMFD), before probabilistic linear discriminant analysis (PLDA) modeling for the purpose of improving speaker verification performance in the presence of high inter-session variability. Recently it was shown that WLDA techniqu...
متن کاملبررسی ساختار جمعیتی گاوهای بومی ایران با استفاده از تحلیل افتراقی مؤلفههای اصلی
Effective management of genetic resources in the domestic animals is based on characterization of genetic structure and diversity among populations. Strategies reducing complexity and dimensions of data are required to analyze the genetic relationships between populations based on dense genomic data. The objective of this study was to use the discriminant analysis of principal components (DAPC)...
متن کاملDistance weighted discrimination of face images for gender classification
We illustrate the advantages of distance weighted discrimination for classification and feature extraction in a High Dimension Low Sample Size (HDLSS) situation. The HDLSS context is a gender classification problem of face images in which the dimension of the data is several orders of magnitude larger than the sample size. We compare distance weighted discrimination with Fisher’s linear discrim...
متن کاملMVN package: Multivariate Normality Tests
Assessing the assumption of multivariate normality is required by many parametric multivariate statistical methods, such as discriminant analysis, principal component analysis, MANOVA, etc. Here, we present an R package to asses multivariate normality. The MVN package contains three most widely used multivariate normality tests, including Mardia’s, Henze-Zirkler’s and Royston’s multivariate nor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017